StoryMakAR: Bringing Stories to Life with an Augmented Reality & Physical Prototyping Toolkit for Youth

This toolkit uses block programming, plug-and-play controls, and low fidelity prototyping with a smartphone app and custom hardware to transform virtual augmented reality ideas into physical products.

Researchers at Purdue University have integrated a new toolkit to teach augmented reality (AR) and computer programming to k-12 students while encouraging skills in technology, communication, collaboration, and creativity through storytelling. Current toolkits involve high fidelity prototyping which is often expensive and creates a steep learning curve for students. The Purdue University approach combines block programming, plug-and-play controls, low fidelity prototyping materials. This setup is compatible with a smart phone application, which allows students to have easier accessibility to software programs. There are two main aspects to StoryMakAR, which are Design MakAR Event MakAR, working together to transform virtual ideas into physical reality. This innovative setup includes off-the-shelf head mounted displays, sensors, custom printed circuit boards, and a variety of 3D printed objects. In testing with fifty-two high schoolers in one-hour sessions, positive feedback was given by teachers and students regarding the overall learning experience with specific regard to creative components.

Advantages:

- -Low-cost
- -Educational
- -Accessible

Potential Applications:

- -Youth education
- -Prototyping

Technology ID

2020-RAMA-68962

Category

Education & EdTech/Immersive & XR Learning Environments Education & EdTech/Interactive Student Engagement Technologies

Authors

Caleb Carithers Terrell Glenn Ananya Ipsita Karthik Ramani

Further information

Matt Halladay

MRHalladay@prf.org

Erinn Frank EEFrank@prf.org

View online

TRL: 4

Intellectual Property:

CON-Gov. Funding, N/A, United States

Provisional-Gov. Funding, 2020-04-06, United States

Utility-Gov. Funding, 2021-04-06, United States

Keywords: augmented reality toolkit, AR programming K-12, block programming for youth, low-fidelity prototyping education, StoryMakAR, computer programming education, technology skills K-12, AR youth education, educational AR prototyping, accessible programming software, Augmented Reality, Communications and Computing, Computer Hardware, Computer Programming, Computer Programs, Computer Science, Computer Technology, Computer Vision, Education, Education Technology, Educational Technology, Engineering Education, low-cost, Manufacturing, Mobile Application, Toolkit, Virtual Environment, virtual lab, Virtual Reality