

PURDUE
INNOVATES

Office of Technology
Commercialization

Potent, Highly Selective SHP2 Degrader as Novel Anticancer Agent

A potent, selective Cdc14 phosphatase inhibitor is a novel therapeutic agent for broadly combating human and crop fungal infections as well as cancer.

Researchers at Purdue have developed a small molecule degrader, effective at low nanomolar concentrations, that can degrade Src homology region 2 - containing protein tyrosine phosphatase (SHP2). SHP2 is a protein tyrosine phosphatase (PTP) that is implicated in cancer cell proliferation and survival, making it a desirable target for designing anticancer drugs. While some small molecule degraders specific to SHP2 have been tested, currently, none have strong enough efficacies *in vivo*.

The researchers developed a small molecule inhibitor with an IC₅₀ of 90 nM and tested to find the optimal linker to the E3 ligand. The degrader (dubbed P9) was found to degrade SHP2 at a dose and time dependent basis, with a DC₅₀ of 35.2 Å± 1.5 nM, and highly specific targeting of SHP2 (no observed degradation of other PTP's and common cell proteins after incubation of 16 hours at 1 ÅµM in HEK293 cells). Finally, the anticancer ability of P9 was quantified by dosing a mouse xenograft model of KYSE-520 cells either 25 or 50 mg/kg of P9 daily. A decrease in tumor size and growth was observed with 25 mg/kg of P9 and a nearly complete tumor regression was observed for mice dosed with 50 mg/kg of P9, all with no change in weight or observed side effects.

Technology Validation:

Degradation ability of P9 measured *in vitro* against HEK293 cells by dosing cultures with increasing concentrations of P9 and measuring the levels of SHP2 via Western blot. Specificity of P9 to degrade SHP2 verified by incubating 1 ÅµM of P9 for 16 hours in HEK293 cells and observing the levels of SHP1, LYP, TC-PTP, PTP1B, PRL1, PRL2, AKT, ERK1/2, and Actin, after which, no degradation of other proteins was observed aside from SHP2. Anticancer ability of SHP2 degrader *in vivo* measured by injecting mice with KYSE-520 cancer cells on both of their flanks and measuring the tumor size with calipers according to the equation $V = (W_2 \times L)/2$. At 200 mm³, daily

Technology ID
2024-ZHAN-70417

Category
Biotechnology & Life Sciences/Biomarker Discovery & Diagnostics
Biotechnology & Life Sciences/Analytical & Diagnostic Instrumentation
Pharmaceuticals/Research Tools & Assays

Authors
Yunpeng Bai
Jinmin Miao
Zhong-Yin Zhang

Further information
Joe Kasper
JRKasper@prf.org

Nathan Smith
nesmith@prf.org

[View online](#)

injections of 0 (control), 25, or 50 mg/kg of P9 was conducted, with 50 mg/kg inducing nearly complete tumor regression and a decrease in SHP2 levels to 34 \pm 18 % compared to the control group.

Advantages:

- Potent, compound has DC50 of 35.2 \pm 1.5 nM
- Highly selective for SHP2 protein
- Effective at arresting tumor growth

Applications:

- Anticancer agent
- Biological investigation of SHP2 protein

Related Publication:

Discovery of a SHP2 Degrader with In Vivo Anti-Tumor Activity

<https://doi.org/10.3390/molecules28196947>

TRL: 3

Intellectual Property:

Provisional-Gov. Funding, 2023-10-02, United States | PCT-Gov. Funding, 2024-07-12, WO