Self-Cleaning Cementitious Materials with Lower Nano-TiO₂ and Reduced Carbon Footprint

 CO_2 -cured process halves nano- TiO_2 content while enhancing photocatalytic self-cleaning activity.

Researchers at Purdue University have developed a method to create self-cleaning cementitious materials and coatings with lower nano-TiO2 content and reduced carbon footprint caused by the production of these materials. This can be done by using carbon dioxide curing during the production process. Normally, over 4% of nano-TiO2 is required to provide cementitious composites with self-cleaning activity. However, with this new method, the researchers were able to obtain cementitious coatings with 2% of nano-TiO2. This process not only reduces the carbon footprint, but also increases the self-cleaning activity of the cementitious materials.

Advantages:

- Reduced carbon footprint
- Increased self-cleaning capabilities
- Reduced nano-titanium oxide content

Applications:

- Concrete construction
- Transportation infrastructure

Technology Validation:

This technology can be validated with research and testing done by the researchers which shows an improvement in self-cleaning capabilities with their new method of creating self-cleaning cementitious materials.

TRL: 4

Technology ID

2023-VELA-69984

Category

Materials Science &
Nanotechnology/Composites &
Hybrid Materials
Chemicals & Advanced
Materials/Materials Processing &
Manufacturing Technologies

Authors

Vito Francioso Marina Garcia Lopez-Arias Carlos Moro Martinez Maria Velay Lizancos

Further information

Parag Vasekar psvasekar@prf.org

View online

Intellectual Property:

Provisional-Patent, 2022-09-30, United States

Utility Patent, 2023-09-29, United States

Keywords: carbon footprint, Cement, Civil Engineering, Materials and

Manufacturing, Self-cleaning