Optical Sensitizer for Low-Energy Laser Ignition of Propellants

A photosensitive additive enables low-energy, reliable laser ignition for rockets and defense.

Researchers at Purdue University have developed a new optical sensitizer for low-energy laser ignition of propellants. Traditional ignition techniques such as hot-wire bridges and pyrotechnic charges can cause accidental sparking and ignitions. Purdue researchers have integrated a photosensitive component to optically sensitize propellants making them capable of energetic ignition under a laser. The flash band energy is found to be 5-8 J-cm^2 on average and in the presence of a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser of wavelength 1064 nm and 532 nm respectively were found to be as low as 0.6 J-cm^2. This new method can be implemented in igniter applications including for rocket engines, motor vehicles, and military and defense.

Technology Validation: The flash band energy of the new optical sensitizers when optically ignited under a Nd:YAG laser of wavelength 1064 nm and 532 nm respectively was found to be as low as 0.6 J-cm².

Advantages:

- -Sustained Ignition
- -Low Energy Ignition
- -Optical Energy in Reaction

Potential Applications:

- -Ignition
- -Laser-Induced Ignition
- -Propellants
- -Rocket Engines

Technology ID

2021-SON-69351

Category

Buildings, Infrastructure, &
Construction/Structural Health
Monitoring
Aerospace & Defense/Defense
Electronics & Surveillance
Technologies
Aerospace &
Defense/Hypersonics &
Propulsion Systems

Further information

Will Buchanan wdbuchanan@prf.org

View online

- -Motor Vehicles
- -Military and Defense

TRL: 2

Intellectual Property:

Provisional-Gov. Funding, 2021-04-30, United States

Utility-Gov. Funding, 2022-02-28, United States

CON-Gov. Funding, 2023-12-01, United States

Keywords: Aluminum, Chemical Analysis, Chemical Engineering, chemical reaction, Chemical Reaction Pathway, Chemistry, Chemistry and Chemical Analysis, Ignition System, laser, Lasers, Nanomaterials, Nanophotonics, Nanoscale, optical bandwidth, Optical Elements, Photosensitizer, Photosensitizers, Polymers, Propellant, Propellants, Rocket Propellant