Novel Agrobacterium Strains that will Transiently Express but not Integrate T-DNA

Engineered Agrobacterium transiently expresses T-DNA in plants without genomic integration.

Researchers at Purdue University have developed a new agrobacterium strain for genetic transformation in plants. Agrobacterium is used to append a region of transfer DNA (T-DNA) of tumor-induced (Ti-)plasmid to a plant, and T-DNA is processed from virD1 and virD2 virulence proteins to achieve genetic transformation. Traditionally, this process often leads to undesired genetic alterations. Purdue researchers have optimized a process for synthesizing a new agrobacterium strain to transfer T-DNA without integrating it into the plant genome.

Advantages:

- -Gene Expression Without Genome Integration
- -T-DNA Transfer to Plants

Potential Applications:

- -Plant Genetics
- -Agrobiosciences

Technology Validation: New mutations of virD2 have been studied

Recent Publication:

Dr. Stanton Gelvin's Project Webpage

https://www.bio.purdue.edu/People/faculty/gelvin/gelvinweb/completeproposal.html

TRL: 2

Intellectual Property:

Technology ID

2021-GELV-69237

Category

Agriculture, Nutrition, &
AgTech/Precision Agriculture &
Smart Farming
Agriculture, Nutrition, &
AgTech/Crop Genetics &
Breeding
Biotechnology & Life
Sciences/Synthetic Biology &
Genetic Engineering

Authors

Stanton Gelvin Lan-Ying Lee

Further information

Raquel Peron rperon@prf.org

View online

Provisional-Gov. Funding, 2020-10-09, United States

Utility-Gov. Funding, 2021-10-06, United States

CIP-Gov. Funding, 2024-04-10, United States

Keywords: Agbiotech, Agriculture, Agrobacterium transformation, Agrobiosciences, DNA, DNA & RNA Tools, Gene Expression, Plant Genetics, Plants, protein expressions and purification, Protein Interaction and Functions