Multichannel Hydrataion Management Sensor

A cost-efficient, accurate, and fast-readout paper-based wearable sweat sensor provides real-time diagnostics for athletic, military, and clinical applications.

Researchers at Purdue University have developed a new highly accurate system with fast readout for measuring sweat rate. Current biometric technologies for sensing sweat are focused on steady-state analysis, but this is usually not feasible for real-time and whole body sweat rate estimates. These systems are effective for clinical settings but are usually too bulky and complex for point-of-care diagnostics. There remains a need for quickly quantifying sweat rate for athletes, first responders, soldiers in the military, and more. Purdue researchers meet this challenge with a new discrete paper-based sweat sensor design that provides accuracy, reliability, and cost-efficiency to users. As an added advantage, the device can be easily adapted as a wearable wristband.

Advantages

- -Wearable
- -Accurate
- -Fast Readout

Applications

- -Clinical Diagnostics
- -Point of Care Diagnostics
- -Military
- -First Responders
- -Athletes/Sporting

Technology Validation:

Technology ID

2020-ZIAI-69063

Category

Biotechnology & Life
Sciences/Biomarker Discovery &
Diagnostics

Authors

Manuel Ochoa Babak Ziaie

Further information

Dipak Narula dnarula@prf.org

View online

This technology is in the concept stages.

TRL: 3

Intellectual Property:

Provisional-Patent, 2020-04-30, United States | Utility Patent, 2021-04-30, United States

Keywords: sweat sensor, wearable biosensor, paper-based sensor, real-time sweat rate, point-of-care diagnostics, clinical diagnostics, fast readout, discrete sensor, wearable wristband, athletic performance tracking, Biomedical, Biomedical Engineering, Biometrics, biosensor, Biotechnology, First Responder, Health, Health IT, Medical, Medical/Health, Military, paper microfluidic, sensor, Sports, wearable, Wearable Medical Device, Wearable Sensor