Heterogeneously Integrated Si Nanoneedles with Flexible Bio-Substrates for Efficient Bio-integrations

Flexible, biodegradable silicon nanoneedles offer a minimally invasive platform for cell-level imaging, probing, and molecular delivery in biological systems.

Researchers at Purdue University have developed Si nanoneedles fabricated with various kinds of mechanically flexible bio-related substrates, providing flexibility, stretchability, and biodegradability. The transparent, ultrathin nanoneedles serve as an ideal platform for minimally invasive penetration into biological cells. This technology would help researchers or instructors who want to image, probe, and/or deliver molecules into/from biological systems for measuring important electrical and/or mechanical properties.

Advantages:

- -Flexible/stretchable
- -Minimally invasive
- -Biodegradable

Potential Applications:

- -Imaging
- -Probing
- -Molecule transfer

TRL: 3

Intellectual Property:

Provisional-Patent, 2018-09-27, United States | PCT-Patent, 2019-09-27, WO | NATL-Patent, 2021-03-18, United States

Keywords: Si nanoneedles, flexible bio-substrates, stretchable nanoneedles, biodegradable technology, minimally invasive penetration, biological cell

Technology ID

2018-LEE-68049

Category

Materials Science &
Nanotechnology/Nanomaterials
& Nanostructures
Materials Science &
Nanotechnology/Biomedical &
Bioinspired Materials
Biotechnology & Life
Sciences/Analytical & Diagnostic
Instrumentation

Authors

Dong Rip Kim Chi Hwan Lee

Further information

Patrick Finnerty
pwfinnerty@prf.org

View online

e delivery, ele ement, ultrat		ar cilicity I	nechanica		