

PURDUE
INNOVATES

Office of Technology
Commercialization

Methods of Fabricating Refractory Complex Concentrated Alloys

A new fabrication method yields oxidation- and corrosion-resistant alloys for aerospace, defense, and energy devices.

Researchers at Purdue University have developed a new method for fabricating refractory complex concentrated alloys (RCCAs, comprised of metals such as molybdenum, niobium, tantalum, and tungsten). These alloys have the potential for use in a myriad of advanced ultra-high-temperature components for military/defense, energy production, aerospace, and transportation applications. Current RCCAs and conventional superalloys undergo significant degradation in mechanical properties and corrosion resistance at temperatures well above 1200°C. The Purdue University approach yields RCCAs with tailororable structures and chemistries for enhanced high-temperature mechanical and chemical performance.

Advantages:

- Oxidation Resistant
- Corrosion Resistant
- Wear Resistant
- High Temperature Withstanding
- Tailorable Structure and Chemistry

Potential Applications:

- Energy Production
- Military/Defense -Aerospace
- Transportation (Marine, Car, Truck, Aircraft)

TRL: 5

Intellectual Property:

Technology ID
2020-SAND-69002

Category
Aerospace & National
Security/Defense, Electronics, &
Surveillance Technologies
Materials Science &
Nanotechnology/Composites &
Hybrid Materials

Authors
Kenneth H Sandhage

Further information
Will Buchanan
wdbuchanan@prf.org

Jacob Brejcha
jjbrejcha@prf.org

[View online](#)

Provisional-Gov. Funding, 2020-03-25, United States | Utility-Gov. Funding,
2021-03-22, United States | DIV-Gov. Funding, 2023-08-24, United States