Electronic Textile Devices for Health Status Monitoring

Durable, stretchable multimodal e-textiles with sub-mm resolution for animal and human health monitoring.

Increasing demand for remote healthcare has led to the need for electronic textiles (e-textiles). However, the deployment of e-textiles in clinical practice is still limited by the lack of large-scale production of those materials. Furthermore, the current e-textiles products available in the market lacks durability, electrical connectivity, and/or fine patterning

Researchers at Purdue University have developed a novel method for etextile fabrication, which enables the direct spray writing of multimodal sensors into commercial stretch fabrics or garments. The e-textiles created via the Purdue researchers' method presents a better pattern at submillimeter resolution and retains the wearability and durability of commercial textiles. Additionally, the e-textiles are accommodative of a variety of body sizes and shapes and fit tightly and comfortably to the skin, helping to anchor the recording electrodes in place

Advantages:

- -Versatile in accommodating textiles
- -High-resolution
- -Durable
- -Wearable

Potential Applications:

-E-textiles with tailored designs for both large animals and humans

Technology Validation: Pilot studies in a horse model demonstrate the utility of the e-textiles in ambulatory health monitoring of large animals in a minimally obtrusive manner beyond conventional measurement methods.

Technology ID

2022-LEE-69583

Category

Digital Health &
Medtech/Wearable Health Tech
& Biosensors

Authors

Semih Akin Tae Hoo Chang Laurent Couetil Martin Jun Chi Hwan Lee

Further information

Patrick Finnerty
pwfinnerty@prf.org

View online

TRL: 4

Intellectual Property:

Provisional-Gov. Funding, 2021-10-29, United States

Utility-Gov. Funding, 2022-08-29, United States

Keywords: Biomedical Engineering, Electronic Textiles, Healthcare, Real-

Time Ambulatory Monitoring, Wearable Sensors