Bypass Valve Applied to the Electro-Hydraulic Actuator (EHA)

Compact bypass valve EHA design improves efficiency, speed range, and affordability for aerospace, robotics, and machinery.

Increasing interest in the replacement of traditional hydraulic architectures with energy-efficient, plug-and-play systems has led to great potential for electro-hydraulic actuator (EHA) technology. Current EHAs have a wide range of applications within mechanical systems, but they are often limited by overall efficiency as well as the range of functional actuation speeds.

Researchers at Purdue University have developed a concept for an improved EHA system that increases efficiency and range of actuation speeds while decreasing cost and size of the EHA unit. This concept represents a step forward for the application of EHAs in place of their traditional hydraulic counterparts.

Advantages:

- More compact than existing solutions
- Lower cost than existing solutions
- Increased efficiency and energy recuperation
- Improved range of actuation speeds using a fix-displacement pump

Applications:

- Heavy duty mobile machinery
- Aerospace
- Robotics
- Prosthetics

Technology Validation:

Technology ID

2021-VACC-69251

Category

Digital Health &
Medtech/Wearable Health Tech
& Biosensors
Aerospace &
Defense/Hypersonics &
Propulsion Systems

Authors

Shaoyang Qu Andrea Vacca

Further information

Parag Vasekar psvasekar@prf.org

View online

This technology has been validated through laboratory testing and computer modelling.

TRL: 3

Intellectual Property:

Provisional-Gov. Funding, 2021-02-09, United States

Utility-Gov. Funding, 2022-02-09, United States

DIV-Gov. Funding, 2023-12-19, United States

Keywords: Fluid Pump, Hydraulic Fluid Power, Hydraulics, Machinery, Valves